ARTIFICIAL INTELLIGENCE 295

A Polymorphic Type System for
Prolog™

Alan Mycroft**

Department of Computer Science, Edinburgh University,
Kings Buildings, Mayfield Road, Edinburgh EH9 317, UK.

Richard A. O’Keefe
Department of Artificial Intelligence, Edinburgh University,
Hope Park Square, Meadow Lane, Edinburgh EHS INW, UK.

Recommended by Daniel Bobrow

ABSTRACT

We describe a polymorphic type scheme for Prolog which makes static type checking possible.
Polymorphism gives a good degree of flexibility to the type system, and makes it intrude very linle on a
ser's programming style. The only additions to the language are type declarations, which an
interpreter can ignore if it so desires, with the guarantee that a well-typed program will behave
idensically with or withowt type checking. Our implementation is discussed and we observe that the
fipe resolution problem for a Prolog program is another Prolog (meta \program.

1. Introduction

Prolog currently lacks any form of type checking, being designed as a language
with a single type (the term). While this is useful for learning it initially and for
fast construction of sketch programs, it has several deficiencies for its use as a
serious tool for building large systems. These centre around the facts that type
errors can only be detected at run-time and that modules cannot have secure
representations.

We have observed that a theorem prover which reasons about Prolog
programs can be more powerful if it has type information available. One

*This work was supported by the British Science and Engineering Research Council.
**Present address: Institutionen for Informationsbehandling, Chalmers Tekniska Hogskola,
5412 96 Giteborg, Sweden,
Artificial Intelligence 23 (1984) 205-3)7
(N04-3702/84/$3.00 (@ 1984, Elsevier Science Publishers B,V (Morth-Holland)

296 A. MYCROFT AND R.A. O'KEEFE

indication as to why this is so can be seen from the fact that the traditional i
definition of append has append(nil, 3, 3) deducible from its definition.
Prolog programs can contain many kinds of errors. Tools exist to detect
several error classes. Two of the commoner error classes for which no tool
previously existed are transposed arguments and omitted cases. Type checking
often catches the first error and (providing we are willing to adopt a certain
programming style) can give a method for determining whether all the casesina
Prolog predicate have been considered. For example, a predicate defined by

type neglist(list(int), list(int))
neglist(cons(A. L), cons(B, M)) < negate(A, B), neglist(L, M)

will never succeed, since we have probably omitted the clause
neglist(nil, nil) —

A type system would enable us to detect this by checking for exhaustive
specification of argument patterns for a given data type. Of course, if we really
did want a certain case to fail, then adding a clause such as

neglist(nil, nil) « Ffail

would be an explicit way of requesting such an event without leaving first-order
logic (and would facilitate later reading of the program). 5
Moreover, our type system can be used as the basis of an encapsulation
providing an abstract data type facility. The ability to hide the internal detai s
of a given object greatly aids the reliability of a large system built from
library of modules.
Finally, we note that static type checking cannot of itself provide a great
increase in speed of Prolog programs, due to the fact that term unification must
still be performed, as in the dynamic case. However, a new compiler for typed
Prolog could improve the speed of compiled clauses of a given predicate by usinga
mapping of data constructors onto small adjacent integers to enable faster
selection of the clause(s) to be invoked. By far the greatest gain is that of
programmer time provided by early detection of errors.
As far as we know this work is the first application of a polymorphic type
scheme to Prolog, but related work includes Milner's work [4] on typing a
simple applicative language which is used in the ML [3] type checker and the
HOPE language which uses a version of Milner's algorithm extended to permit
overloading. However, this work differs from these in several respects. Firstly,
the formulation of Prolog as clauses means that the problems of generic and
nongeneric variables are much reduced. All predicate and functor definitio 15
naturally receive generic polymorphic types which can be used at different typ

POLYMORPHIC TYPE SYSTEM FOR PROLOG 297

instances within the program whilst all variables receive nongeneric types.
Moreover, our formulation for Prolog removes a restriction in Milner’s scheme
in which all mutually recursive definitions can only be used nongenerically
within their bodies. Thus in ML the (rather contrived) program

letrec [x=x
and fx=I(x+1)
and g x = if I(x) then 1 else 2

would be ill-typed. Since all Prolog clauses are defined mutually recursively, this
restriction would have the effect of making the polymorphism useless.

Our approach is to consider type specifications as restrictions on arguments to
predicates (and functors). Some built-in predicates already have such restrictions,
forexample “Z is X + Y or plus(X, Y, Z) are not semantically meaningful when
X, Y or Z is instantiated to a non-integer and in typical implementations give a
run-time error rather than simple failure to indicate a presumed programming
error. Our type scheme enables the user to place restrictions on defined predicates
in an analogous manner. Moreover, we do not test for violation of such restrictions
at run time, but by statically forbidding all programs which may lead to a type
error. We make a slogan out of this and say that “well-typed programs do not go
wrong”. The notion of ‘wrong’ here is independent of success, failure or looping.
For example “6is4 + 3" is well-typed and fails whereas eqint(foo, foo) (defined by
eqint(X, X) and type restricted to integers) is ill-typed for us but would succeed if
evaluated. Due to the type-checker being a separate program, type checking does
not change the semantics of Prolog, but merely discourages the execution of
ill-typed programs,

In contrast, Mishra [5] considers types as sets of terms generated by a regular
tree grammar with the semantic basis that predicate p has type T if p(r) fails for all
t outside T, Such types include our monomorphic types (based on many-sorted
algebras) as a special case, but it is unclear whether this idea can be naturally
extended to polymorphic types (for example the polytype a X a can only be badly
approximated by using the same regular trees as for a ¥ §). One advantage is that
the implicit data type declarations of an untyped Prolog program can often be
determined.

2. Mathematics

We assume the notion of substitution, a map from variables (and terms by
extension) to terms, ranged over by @ and ¢. An invertible substitution is called a
renaming. If a term, u, is obtained from another, v, by substitution then we say that
u is an instance of v, and write u = v. We write u=v if u=uv and v = u. This
means that u and v only differ in the names of their variables and that the
' substitutions involved are renamings. Also assumed is the notion of most general

unifier (MGU) of two terms.

208 A. MYCROFT AND R.A. O'KEEFE

For any class of objects S, the notation §* will be used to indicate the class of
objects consisting of finite sequences of elements of §.

3. Prolog

The simple variant of Prolog we consider will be defined by the following syntax
(we assume the existence of disjoint sets of symbols called Var, Pred and Functor,
representing variabies, predicates and functors symbaols respectively):

Term ::= Var|Functor(Term*),
Atom ::= Pred(Term*).

Clause ::= Atom «— Atom*,
Sentence ::= Clause* ,
Program ::= Sentence; Atom,
Resolvent ::= Atom* .

By definition of clause form each, implicitly universally quantified, variable
appears in at most one clause. To make the formal description of typing
simpler, we assume that the textual names of variables also follow this rule. A
program then is given by a finite list of (Horn) clause declarations. followed by
an Atom (short for atomic formula), called the query, to evaluate in their
context. It specifies an initial resolvent by taking the query and treating it as a
one-element list,

The evaluation mechanism for Prolog is very simple, and based on the notion
of SLD-resolution as the computation step.

SLD-resolution is the one-step evaluation which transforms a Resolvent, Given
a resolvent

we select an Atom, the selected atom, say Ay, and perform resolution with it anda
matching clause. So, choose a clause of the program, the selected clause, say Q,
given by

and suppose that R has no variables in common with it (otherwise we must
rename its (Q's) free variables since they are implicitly universally quantified
for the clause).

Now let # be MGU(A,, C) if this exists. If it does. then we can rewrite R
into R' given by

1 Sy R . il

The most common form of Prolog interpreter uses k = 1 when this expression
simplifies somewhat.
An answer is produced when the resolvent is rewritten into a sequence of

POLYMORPHIC TYPE SYSTEM FOR PROLOG 299

zero atoms. The associated answer to such a rewriting sequence is the com-
position of most general unifiers encountered during the rewriting process, or
rather its restriction to the variables in the query.

Observe that the above specification only told us how we could produce an
answer (if one exists) from a Prolog program. For computation the choices
above (the selected atom and clause) must be incorporated into a deterministic
tree searching algorithm, which we take time to explain below for the reader’s
benefit. However, we would like to stress now that the results on type checking
given in Section 5 work for any order to evaluation (choices of atoms and
tlauses) of Prolog programs (depth-first/breadth-first/coroutining/parallel).

L1, Digression: SLD-trees

The idea of SLD-resolution above, leads to the idea of an SLD-tree: whenever
we are forced to select a clause then, instead of irreversibly choosing a given
matching clause, we construct a tree of resolvents (an SLD-tree) where a
resolvent has a son resolvent for each clause which matches with the selected
atom. A sensible computation (the standard implementation of Prolog) is then
lo search this tree in depth-first left-right manner.

Some branches die out, in that no clause maiches the selected atom, whereas
others have more than one subtree contribute to the answer. This is often
referred to as the nondeterminacy of Prolog.

Finally, we remark that there is never any need to seek alternatives to the
selected atom—in fact doing so would merely lead to duplication of answers
exhibited elsewhere in the SLD-tree. (For more details on this aspect see [1].)

4. Types

The scheme of types (Type) we allow are given by the following grammar and
are essentially the same as those which occur in ML [3]. We assume disjoint
sets of type constructors (Tcons, ranged over by roman words) and type
variables (Tvar, ranged over by greek letters like a, B, v). These are also
gssumed to be disjoint from Var, Pred and Functor.

Type ::= Tvar|Tcons(Type*)
ype will be ranged over by p, o, 7, . . . A type is called a monotype if it has no type
ariables. Otherwise it is a polytype.
For example, we suppose that Tcons includes the nullary constructor int
d the unary list. Example types are then

list{e), int, list(list(int)), etc.

ote that the third type is an instance of the first.

300 A, MYCROFT AND R.A. O'KEEFE

4.1. Digression: the Unary Predicate Calculus

The type systems used in many Al programs are variants or restrictions of the
Unary Predicate Calculus. However, UPC is not adequate as the single type =
system for an Al programming language. Rules such as

(¥YN, L) integer(N) » int_list(L) <> int_list(cons(N, L)),
(VL) int_list(L) <> L = nil v (integer(car(L)) » int_list(cdr(L)))

cannot be expressed in it

5. Well-typing of Prolog

This section contains the central definition of a Prolog program being well-
typed. together with precursor and auxiliary definitions. Many of the ideas
appear in [4] where a polymorphic applicative language is typed, but our
formulation for Prolog poses new problems and simplifies old ones as we
discussed in the introduction. .

Let Q be the clause C+B,, ..., B, and P be a finite subset of Var U Pred U
Functor containing all the symbols of Q. We define a typing P of P to be an
association of an extended type of each symbol occurring in (. The types are
members of a given algebra as defined in Section 4. Predicates and functors aré
associated with extended types as given below. Types and extended types will
be written as a superscript on the object they are associated with. o; and 7
will represent (non-extended) types. For each variable X occurring in Q, E will
contain an element of the form X, for each predicate a of arity k in Q, P will
contain an element of the form a®". For each functor f of arity k in O, P
will contain an element of the form flo---- m)=r, -

Similarly, the clause Q will be written as a typed clause Q by the writing of &
type on each term (this includes vanables).

As an example of a clause and its typing consider the clause (, given by

appl{cons(A, L), M, cons(A, N)«app(L, M, N).

The set P ={A, L, M, N, app, cons} gives its set of symbols, and a typing (which
will turn out to be a well-typing considered later) can be given by P:

{Ant LT\. M'r‘ Nrt app7.1'.1'1 En“siw.f]—*'r}

where 7 is used as a shorthand for list(«) and the associated typed clause Q given
by:

applcons{A®, L™y, M", cons(A®, N™Y)<app(L", M", N7).

P will be called the typed premise of Q due to the relation to theorem provi g

Fortunately, it will turn out that most of the mess of types written above aré

interdependent and the above expression can be well-typed much more sug
cinctly—see later.

POLYMORPHIC TYPE SYSTEM FOR PROLOG 301

We will now define Q to be a well-typing of Q under P, written Pt O if the
following conditions hold:

(1) Pr(A«<B,,....B.)if
A=a(p,....1}) and a*€P
with (r,....7)=gp
and PHep (I=i=k)
andﬁl—ﬂj (1=i=m)

(2) PrAf A isan Atom and
A=a(th,....tF) and gre P
with (r,...,)=p
and PHin (1=i<k).

(3) Pru” if uisa Term and
u=far,....tp) and frepP
with ((7),....)= o)=p
and Phap (1=i=k).

(4) PrX-ii XTEP

Now, we will define a program to be well-typed under a typed premise P if
each of its clauses is well-typed under P and if its query atom is. Similarly a
resolvent is well-typed if each of its atoms is.

Well-typing as a mathematical concept is of little use, unless we relate it to

tomputation. This we will now do, under the motto ‘Well-typed programs do
not go wrong’,

6. Well-typed Programs Do Not Go Wrong

What we desire to show, is the semantic soundness condition that if a program
gan be well-typed, then one step of SLD-resolution will take a well-typed
resolvent into a new well-typed resolvent. Thus any SLD-evaluation of a
well-typed program will remain well-typed. 1t is trivially the case that the initial
solvent is well-typed if the program is. Moreover, this means that the
ariables in the query can only be instantiated to terms specified by their types
iven by the well-typing. As discussed in the introduction “‘do not go wrong”
ns only that resolvents satisfy the type restrictions, and nothing about whether
e evaluation succeeds, fails or loops.

The first condition is simply proved: Let R be the resolvent AL A, ‘and
t Q be a clause C—B,, B, which has no variables in common with R
the case where Q and R have variables in common will be discussed later).
ithout loss of generality (symmetry) let A, be the selected atom and suppose

= MGU(A,, €) exists. The resolvent produced by one-step evaluation is R’
iven by

302 A. MYCROFT AND R.A. O'KEEFE

We will now show how to well-type this from the well-typing of R.

Let us suppose that there is a typing . P of the symbols of Q and R and associated
well-typings R and Q such that P+ R and P+ Q (note this provides well-typings
A, C, B;). Moreover, let us suppose that R and O have no type variables in
common (again, we will discuss this later, but note that the typing rules never rely
on the ‘absolute’ names of the type variables).

Let the type of the predicate symbol of C in P be ¢m =, Now the

well-typing determines that C can be written c(s{'....,s) and A, as
] i) where

(n....o)=(p1,.... ;)

(Tt 0) =P .- ;).

This means that there is a substitution ¢ on type variables (actually =
MGU({Uh ML U'g:]. {Th SRR H‘] such that {T| Tp:]' = ¢{{{T] (Tk]}.
The claim is that

ﬁl— ﬂ[¢{ﬁl}- M {p{gm]m -’ih R ‘E‘n}

gives a well-typing of R', where applying ¢ (a type substitution) to a typed
atom means that it is to be applied to the type variables in types associated
with terms occurring within that atom.

We now address the problem of there being variables, or type variables, in
common between R and Q. These are really the same problem (the perennial
one of renaming in Prolog). A simple solution is the following: Whenever we
come to perform resolution between a clause @ and a resolvent R we rename
Q such that all its variables (using a renaming) and all its type variab
(using a renaming n) are distinct from the variables (and type variables) in
and the other clauses. This can always be done since R can only contain a finite
number of different variables. Moreover, this does not change the meaning
(. This strictly breaks the type scheme, since the new variables appearing in
do not appear in P. However, a simple addition to P of (X)"" for e
variable X in the original Q which appeared as X~ in P serves to correct
and preserve the typing. We are now back in the case where and R have
variables or type variables in common. '

We now return to the problem of showing that a well-typed program
only instantiate the variables of its query to values having types as dictated
the typed premise. To see that this is the case, it is merely necessary to obse
that each resolution step (as above) is performed between an Atom A and
(type) instance of a clause C+—B,, ..., B,, such that the types of A and
instance of C are identical except for the names of type variables.
variables in A can only be instantiated to Terms (possibly other variab
having identical types. The whole result is proved by induction on the length
computation leading to a refutation,

POLYMORPHIC TYPE S5YSTEM FOR PROLOG 303

7. Specification of the Type Information to Prolog

We suggest that the type specification be performed by annotations to the
Prolog system. The well-typing required three sets of information 1o be
supplied;

- the types of the predicates:

—the types of the functors:

~the types of the variables.

We suggest that declarations be supplied which give the type of the first two
but the type of variables can casily be determined from them. This can be seen
by observing that a well-typed Atom or Term labels the type of each argument
Term, and so each variable is labelled with a type. The most general unifier of
all the types associated with a single variable (if it exists) gives a type for that
variable, (This is also convenient since the scope of variables in Prolog is a
single clause, whereas the other objects have a global scope.)

It is convenient to specify the names of types along with the functors which
create them from other types. This has been demonstrated by HOPE [2] and
we do not expect to better this idea.

So one of the declarations, or metacommands is one of the form

Declaration ::= type Tcons(Tvar*) = Functnr{T}rpc‘]* i
Examples would be (the second somewhat improper)

type hist(a) = nil, cons(er, list{a)) .
fypeint=> 0, 1) S102050 33,

The second declaration specifies the type of predicates. Suggested syntax is
Declaration ::= pred Pred(Type*).

and an example for the ‘equal’ function defined by
equal(X, X) «

would be
pred equal(a, o) .

We note here, that, given the types of the functors, it would seem possible
1o determine the types of the predicates involved without any great amount of
work (as in ML [4]). However, this seems to depend on an analysis of the
whole program at once, rather than any form of interaction.’ We would also
tlaim that the documentation provided by the written form of the types
facilitates human understanding of programs in much the same way that

'Moreover there is a small technical problem concerning recursive definitions which makes
Ehecking of type specifications of such definitions much casier than their derivation.

304 A, MYCROFT AND R.A. (YKEEFE

explicit specification of mode information (input/output use of parameters) for
predicates does.

7.1. Abstract data types

We observe that the above declarations furnish a form of abstract data typing.
Providing a ‘module’ construct and exporting from it a given type name, and
predicates which operate on that type, but not the constructor functors for that
type. enables us to use a type, but not to determine anything about its
representation. HOPE has such a construct, and we think it would greatly
benefit Prolog.

8. Overloading

The above discussion has centred on a formalism for well-typing Prolog.
However, it does not allow for one feature which we have found to be useful,
and which is very easy to build into the type system. This feature is overloading
and appears in a similar form in HOPE [2].

The observation, is, that quite often, we may wish a given function, predicate
or functor name to stand for more than one distinct operation. This is common
in mathematics and computer science, where an operator (e.g. *+") may be used
to denote a different function at different types. In Prolog this can be useful
too. For example, we may wish to have types specified by

list(a) = nil, cons(a, list(a)).
tree(a) = nil, leaf(e), cons(tree(a), tree(a)),

where the constructors nil and cons{_, _) have different meanings according o
whether they act on lists or trees. (Of course we could give them different
names, but this is not always helpful to the programmer.)

Similarly, we may want certain predicate symbols to refer to diffe
predicates according to the type of their arguments. A typical example wou
be some sort of ‘size’ predicate.

We formalize this by permitting the typed premises used above to contai
more than one type associated with any given functor or predicate symbol.

9. Implementation

We have built such a system in Prolog which implements the overloaded ty

checker by backtracking. Note that this is not particularly difficult since our
well-typing rules given in Section 5 are essentially Horn clauses. There

merely two points to observe. Firstly, the ‘occur-check’ of unification {which
often omitted by Prolog implementations) is essential for this type checki
scheme. Secondly, the use of = can be simulated by instantiation of a copy
the functor or predicate type and the use of = by a common metalingui

POLYMORPHIC TYPE SYSTEM FOR PROLOG 305

predicate (numbervars) which instantiates variables in a term to ground terms
to avoid their further instantiation. Copies of the code can be found in [6].

That the well-typing rules (which define when a given program has a given
type) can be used to determine the type of a given program is a simple
consequence of the Horn clause input/output duality. Moreover, when the
well-typing rules are used in this fashion on a given program, T say, then the
standard SLD-resolution will produce a terminating evaluation giving the most
general types associated with T. The basic idea is that if the well-typing
problem has no solution, then the program is ill-typed. If it has exactly one,
then the program is well-typed, and if it has more than one then some
overloaded operator is ambiguous.

10. Higher-order Objects

This section is much more tentative and more in the manner of suggestion than
the rest of the paper and we would be grateful for any comments on its
inclusion or its contents. It is included because we want to discuss the well-
typing of objects which do not form part of first-order Prolog, in particular the
call and univ operators.

The definition of call is based on the fact that most Frolog implementations
use the same set of symbols for predicates and functors (this causes no syntactic
ambiguity) and thus a Term has a naturally corresponding Atom. Hence call is
defined to be that predicate such that call(X) is equivalent to Y where Y is the
Atom corresponding to the Term X. Thus call provides a method of evaluating
a Term which has been constructed in a program and is accordingly related to
EVAL in Lisp. We would like to argue that such a predicate is more powerful
than is required and indeed encourages both bad programming style and
inefficient code. It is certainly the case that most uses of call are used in the
restricted case of applying a certain functor passed as a parameter (o arguments
determined locally (as in mapping predicates). Functions or predicates like
EVAL or call do not appear to have sensible types and are thus generally
omitted from strongly typed languages in favour of some form of APPLY
construct.

We would like then to change our definition of Prolog and its typing to
introduce this construct. To do this we introduce a family of abstract data
lypes, called

pred{a), pred(a, 8). pred(a, 8, v),...
and a family of predicates with types given by
pred apply(pred(a), «), apply(pred(a, 8). a, 8). . ..

The only way to introduce objects of type pred is by a special piece of syntax
given by

Term :: = A Var*- Atom .

306 A. MYCROFT AND R.A. OYKEEFE

The intended meaning of a value such as A(X, Y):append(_, X, Y) is “that
dyadic predicate which is true if and only if its first parameter is a terminal
sublist of its second”. The term A(X..., X)) pltn.... 0 X, ..., %)
receives type pred(Tisy, . . ., Tisn) if p has type (71, . . ., Tisn). Such values belong
to an abstract data type and can (eventually) only be used in the predicate family
apply. The above notation is borrowed from the A -calculus and is at some variance
with the commonly implemented form (see [8] for more discussion) which
unfortunately requires symbol tables to be kept even in compiled Prolog and does
not appear to fit into a notion of type, Our syntax makes it clear that the intended
use (the only use permitted by the type rules) of append(_, X, Y) is as an Atom
and not as a Term with a coincidental representation. This means that the valueof
such a Term can be represented as a code (or possibly closure) pointer rather than
the Term structure thus avoiding the need for run time symbol tables. 1t can be
shown that such a scheme is type secure. For example, the map predicate can be
defined and used by:

map(F, cons(A, L), cons(B, M)) « apply(F, A, B), map(L, M)
map(F, nil, nil) «—
neglist(X, Y) < map(A(A, B)-negate(A, B), X, Y)

assuming that negate is defined as a dyadic predicate. The type of map so
defined would be (pred{a, 8), list(x), list(5)). i
The other higher-order object frequently used is the univ predicate (often
written ‘=..") which can be used to transform a Term into a list of Terms
derived from the former’s top-level substructure. (This is typically used for
analysing terms read with input functions.) Thus

univ(f(g(X, a), Y), [f. g(X. a), Y])

is true. As it stands this clearly breaks the type-scheme we are proposing since
the elements of the list represented by the second parameter need not be of the
same type, We observe again, that such a predicate is not commonly used in its
full generality, but rather to allow arbitrary terms to be input. As such, we
suspect that introducing a new type ‘input_term’ which specifies the type of
objects generated by input routines and giving univ the type (input_te
list(input_term)), together with a notation for treating a Term as an input_t
would give much of the power of univ within a strong typing discipline. .

The difficulty of typing wuniv arises from the conflation of object ant
metalevels in one language, which requires the same object to simultane
possess at least two types, in a stronger sense than overloading. A satisfacto
resolution of this problem waits on the introduction of an explicit metalevel of
the construction of a genuinely reflective Prolog [7].

POLYMORPHIC TYPE SYSTEM FOR PROLOG 307

11. Conclusions

We have shown how to well-type that subset of Prolog described by first-order
logic and indicated how this might be extended to allow higher-order objects. It
is an interesting result that the well-typing problem for a Prolog program can
itself be regarded as a Prolog metaprogram.

REFERENCES

. Apt, K.R. and van Emden, M.H., Contributions to the theory of logic programming, J. ACM
29(3) (1982) 841-862.

2 Burstall, R.M., MacQueen, D. and Sannella, D.T., HOPE: an experimental applicative lan-
gauge, in: Conference Record of the 1980 LISP Conference (1980); also: Internal Rept. CSR-62-
80, Department of Computer Science, Edinburgh University, Edinburgh, 1980.

3 Gordon, M.J.C., Milner, A JR.G., Morris, L., Newey, M. and Wadsworth, C., A metalanguage
for interactive proof in LCF, in: Proc, 5th ACM Symp. Frinciples af Programming Languages,
Tucson, AL, 1978,

4. Milner, R., A theory of type polymorphism in programming, J. Compur. Systern Sci. 17(3) (1978)
348-375.

3. Mishra, P., Towards a theory of types in Prolog, in Proc. IEEE Internat. Symp. Logic Programming,
Adtlantic City, 1984,

6. Mycroft, A. and O'Keefe, R.A., A polymorphic type system for Prolog, DAI Research Paper 211,
Dept. of Artificial Intelligence, Edinburgh University, 1983,

1. Smith, B.C., Reflection and semantics in a procedural language, Ph.D. Thesis, MIT LCS,
Cambridge, MA, 1982,

4 Warren, D.H.D., Higher order extensions to Prolog—are they needed? DAIT Research Paper
154, Dept. of Artificial Intelligence, University of Edinburgh, 1981.

Received August 1983

	Introduction

	Mathematics

	Prolog

	Digression:SLD-trees

	Types

	Digression: The Unary Predicate Calculus

	Well-typing of Prolog

	Well-typed Programs Do Not Go Wrong

	Specification of the Type Information to Prolog

	Abstract data types

	Overloading

	Implementation

	Higher-order Objects

	Conclusions

	Reference

